AdaBoost based EMD as a De-Noising Technique in Time Delay Estimation Application
نویسندگان
چکیده
Estimation of time delay between signals received at two spatially separated sensors has considerable practical importance in the applications like source localization, direction finding etc., in RADAR, SONAR and other communication systems. In this paper cross correlation (CC) generalized cross correlation with phase transform (GCCPHAT) and maximum likelihood (ML) estimation methods are used as the time delay estimation methods. Prior to the delay estimation, the received signals are de-noised by AdaBoost based EMD technique. The performance of the delay estimation is significantly degraded by the signal-tonoise ratio (SNR) level and hence this factor has been considered as a principal factor. The simulation results of the proposed method are compared with the basic EMD as a denoising technique at various SNR levels. The results show that the proposed method improves the resolution in the delay estimation in the noisy environment.
منابع مشابه
Reverberation suppression using AdaBoost based EMD in Noisy speech
Reverberation suppression is a crucial problem in speech communications. The intelligibility of the speech signal will be degraded by strong reverberation. This paper presents a novel signal processing scheme that offers an improved solution in reducing the effect of interference caused due to reverberation. It is based on the combination of empirical mode decomposition (EMD) and adaptive boost...
متن کاملSub-optimal Estimation of HIV Time-delay Model using State-Dependent Impulsive Observer with Time-varying Impulse Interval: Application to Continuous-time and Impulsive Inputs
Human Immunodeficiency Virus (HIV) weakens the immune system in confronting various diseases by attacking to CD4+T cells. In modeling HIV behavior, the number of CD4+T cells is considered as the output. But, continuous-time measurement of these cells is not possible in practice, and the measurement is only available at variable intervals that are several times bigger than sampling time. In this...
متن کاملA Survey on the Performance Analysis of WT, PF, EMD & EEMD Methods used in ECG Signal Processing
A noiseless ECG identification technology is an emerging new biometric modality. Different techniques for de-noising of ECG signal are prevalent in recent literatures such as Particle Filter (PF), wavelet transforms (WT), Empirical Mode Decomposition (EMD) & Ensemble-EMD Method. In view of the fact that Analysis of ECG signals becomes difficult to inspect the cardiac activity in the presence of...
متن کاملApplication of Model-Based Estimation to Time-Delay Estimation of Ultrasonic Testing Signals
Time-Delay-Estimation (TDE) has been a topic of interest in many applications in the past few decades. The emphasis of this work is on the application of model-based estimation (MBE) for TDE of ultrasonic signals used in ultrasonic thickness gaging. Ultrasonic thickness gaging is based on precise measurement of the time difference between successive echoes which reflect back from the back wall ...
متن کاملImprovement of Support Vector Machine and Random Forest Algorithm in Predicting Khorramabad River Flow Uusing Non-uniform De-Noising of data and Simplex Algorithm
In this study, in order to simulate the monthly flow of the Khorramabad River, the time series of this river was decomposed into three levels using the wavelet of Daubechies-3, during the period of 1955-2014. Based on this, it was found that there is a Non-uniform noise that includes two periods of time in this signal, with the October 2008 border which required that the signal be become non-un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013